1	(a	(i)	H ₂ on RHS ignore any other species on RHS	[1]
			rest of equation fully correct i.e. $2H^+ + 2e \rightarrow H_2$	[1]
		(ii)	H ⁺ removed / escapes / discharged / used up / reduced (equilibrium) moves to RHS / more water molecules ionise or	[1]
			dissociate / forward reaction favoured	[1]
		(iii)	oxygen / O ₂ not O	[1]
		(iv)	carbon / graphite / platinum (electrode)	[1]
	(b)	(i)	to make ammonia / in petroleum processing / balloons / rocket fuel / fuel for cahardening of fats / fuel cells / fuel (unqualified) / making hydrochloric acid	ars / [1]
		(ii)	to sterilise / disinfect it / kill bacteria / bugs / microbes / micro-organisms / germs	[1]
	(c)	((reference to) volume and time / how long it takes	[1]
		(ii)	carry out experiment with different intensities of light / one in light and one in dark / repeat experiment in reduced light measure new rate which would be <u>faster or slower</u> depending on light intensity	[1] [1]

[Total: 11]

2	(a	(i)
_	, <u>~</u>	۱.,

aqueous	tin	manganese	silver	zinc
solution	Sn	Mn	Ag	Zn
tin(II) nitrate		R	NR	R
manganese(II) nitrate	NR		NR	NR
silver(I) nitrate	R			R
zinc nitrate	NR	R	NR	

[1] for each [3] ignore anything written in blank space

- (ii) Sn + 2Ag⁺ → Sn²⁺ + 2Ag
 all species correct [1]
 accept equation with Sn⁴⁺
- (iii) Mn to Mn²⁺ need both species [1] electron loss **or** oxidation number increases [1]
- (iv) covered with oxide layer [1] makes it unreactive or protects or aluminium oxide unreactive [1]
- (b) (potassium has one valency electron [1]
 or loses one electron
 calcium has two valency electrons
 or loses two electrons [1]
 - (ii) potassium hydroxide → no reaction calcium hydroxide → calcium oxide and water
 ACCEPT metal oxide
 - (iii) $2KNO_3 \rightarrow 2KNO_2 + O_2$ [2] [1] for **formula** of either product

 $2Ca(NO_3)_2 \rightarrow 2CaO + 4NO_2 + O_2$ [2] [1] for **formulae** of any **TWO** products

[Total: 17]

3.	(a)		ved or solution in water aqueous NOT soluble in water	[1]
			and g gas	[1]
	(b)	[1] [1]		
	(c)		decreases or reaction stops or rate becomes zero	[1]
		(ii)	concentration or number of effective collisions decreases used up or less chemical or less collisions etc [1] only	[1] [1]
		(iii)	greater initial slope same final point as long as new curve touches the original curve near the top allocate the mark	[1] [1]
		(iv)	greater surface area	[1]
			7	OTAL = [10

4 (a) (i)	high (densities high fixed points mp or bp coloured compounds hardness complex ions	
		ANY three	[3]
	(ii)	13	[1]
(b)	(i)	manganese chloride water	[1] [1]
	(ii)	manganese(III) and (IV) oxides	[1]
(c)	(i)	rate decreases or becomes zero do NOT accept rate increases then decreases	[1]
		COND concentration decreases hydrogen peroxide used up ONLY [1]	[2]
	(ii)	steeper initial gradient double final volume	[1] [1]
	(iii)	initial gradient less final volume the same must relate to shape of graph	[1] [1]

TOTAL =14